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REGIONAL STRUCTURE, TECTONICS, AND BEDROCK

GEOLOGY

Tectonic Evolution of the Death Valley Region

Brian Wernicke, Division of Geological and Planetary Sciences, Mail Stop 100-23
California Institute of Technology, Pasadena, CA 91125 (626) 395-6192 <brian@gps.caltech.edu>

INTRODUCTION

Progress in understanding the evolution of continents
hinges on seamlessly applying techniques of modern
structural geology to the largest possible regions of the crust.
In most areas, meaningful practice of regional structural
geology is limited by a lack of correspondence between
highly strained crust and well-defined regional strain
markers, that is, large-scale geologic features whose initial
geometry can be reasonably inferred, and their kinematic
evolution constrained, through structural, stratigraphic,
isotopic, paleomagnetic, and geodetic study.

A ~100,000-km? segment of the U.S. Cordilleran oro-
gen, encompassing the celebrated landscapes of Death Val-
ley National Park and five nearby parks that are among the
most visited in the U.S., was severely deformed in late Cen-
ozoic time. In addition to spectacular geologic exposures,
the region harbors a rare endowment of regional structural
markers, developed before and during late Cenozoic defor-
mation. The markers are defined by isopachs and facies
boundaries in the west-thickening Neoproterozoic-Paleo-
zoic Cordilleran miogeocline, by pre-Cenozoic thrust faults
that disrupt the miogeoclinal wedge, and by proximal Ter-
tiary terrigenous detrital strata and their source regions. The
region is still tectonically active, providing an opportunity to
compare deformation patterns of the last decade, constrained
by geodetic studies, with late Cenozoic deformation patterns
spanning 15-20 m.y.

These scientific assets have attracted the attention of
significant numbers of structural geologists over the last
three decades, and distinguished the region as the birthplace
of, and testing ground for, an impressive number of funda-
mental tectonic ideas. Oroclinal bending of mountain
ranges, continental transform faulting and “pull-apart”
basins, low-angle normal faulting, the influence of plate
motions on intracontinental deformation, the “rolling hinge”
model of progressive extensional deformation, the fluid
crustal layer or “crustal asthenosphere” concept, and Pratt
isostatic compensation of mountain ranges were all origi-
nally discovered or have their best known expressions in the
region. This remarkable history of geologic investigation
and innovation continues unabated as growing numbers of

scientists recognize it as a unique place on Earth to ponder
the nature and origin of large-scale continental deformation.

METHODS AND SCOPE OF RESEARCH

The author’s research program in this region began with
his doctoral research in 1979 at MIT, mapping in the Mor-
mon Mountains of southern Nevada under the supervision of
B.C. Burchfiel. After joining the professoriate in 1982, my
research program expanded to include most of the area from
the Sierra to the Colorado Plateau, funded primarily by the
Tectonics and Continental Dynamics programs in the Earth
Sciences Division of the National Science Foundation, with
important contributions from the Department of Energy,
Nuclear Regulatory Commission, a consortium of energy
companies, and university funds. It has included geologic
mapping and structural analysis, stratigraphic studies, isoto-
pic studies, paleomagnetic studies, geodetic studies, and par-
ticipation in two major seismic experiments, the Southern
Sierra Continental Dynamics (SSCD) Project and the Basin
and Range Geoscientific Experiment (BARGE). A bibliog-
raphy of the group’s work relating to Basin and Range tec-
tonics, including 53 published research papers, 4 abstracts of
papers in preparation, 8 discussion papers, 6 field trip guide-
books and 8 theses, is presented at the close of this paper.

Mapping and structural analysis. Bedrock geologic
mapping by the group totals some 3,300 km? at field scales
ranging from 1:10,000 to 1:24,000 (fig. 1). It includes 2,000
km’ between the Spring Mountains and Sierra Nevada
(Death Valley extensional domain) and another 1,300 km?
east of the Spring Mountains (Lake Mead extensional
domain). In the Death Valley domain, the group has mapped
(1) the Panamint Range from Stovepipe Wells to Harrisburg
Flats (Hodges and others, 1987; Wernicke and others, 1993);
(2) the central Resting Spring Range (Niemi and others, in
press; Wernicke, unpublished); (3) the Cottonwood Moun-
tains north of Hunter Mountain (Snow, 1990 and unpub-
lished); (4) the central Black Mountains (Holm, 1992); (5)
the northwestern Spring Mountains (Abolins, 1998); and (6)
the Grapevine Mountains between Scotty’s Castle and Titus
Canyon (N. Niemi, Ph. D. thesis in progress). In the Lake
Mead domain, mapping has included (1) most of the South
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2. Wernicke et al., 1984 (unpublished).

3. Axen et al., 1990, Geol. Soc. America Memoit, 176, 123-154.

4. Axen, 1993, Geol. Soc. America Bull., 105, 1076-1090.

5. Fryxell et al., 1992, Tectonics, 11, 1099-1120.
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Figure 1. Geologic mapping of the Wernicke research group, full references in bibliography at close of paper.
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Virgin Mountains (Fryxell and others, 1992; Brady and
others, in press); (2) the Mormon Mountains (Wernicke and
others, 1985; Axen and others, 1990; Wernicke and others,
1984, unpublished); and (3) the Tule Springs Hills (Axen,
1993).

Stratigraphy. Detailed stratigraphic studies have been
focused primarily on Oligocene and younger strata deposited
prior to and during major Cenozoic deformation, and on key
portions of the pre-Cenozoic miogeoclinal prism. From old-
est strata to youngest, these studies have included (1)
sequence analysis of the Neoproterozoic Johnnie Formation
(Charlton and others, 1997; Abolins, 1998); (2) paleoflow
directions in Eocambrian strata (Snow and Prave, 1994); (3)
studies of the orientation of facies boundaries and isopachs
in Paleozoic strata (Snow, 1992); and (4) measured sections,
facies analyses, and paleoflow directions for Tertiary strata
in the Cottonwood, Grapevine, and Funeral Mountains
(Snow and White, 1990; Snow and Lux, in press), Black
Mountains (Holm and others, 1994), and Resting Spring
Range (Niemi and others, in press).

Geochronology, thermochronology and thermobarom-
etry. Isotopic and petrologic studies, in collaboration with S.
Bowring and K. Hodges (MIT), D. DePaolo (Berkeley), R.
Dokka (LSU), P. Fitzgerald (Arizona), K. Farley and J.
Saleeby (Caltech), S. Jacobsen (Harvard), D. Lux (Maine),
and J. Selverstone (New Mexico) have included (1) cooling
history and paleobarometric studies of the South Virgin
Mountains (Fitzgerald and others, 1991; Brady, 1998; P.
Reiners, unpublished data), Spring Mountains and Panamint
Mountains (Wernicke and

Dokka, unpublished data), Nopah Range (Wernicke
and Farley, work in progress), Funeral Mountains (Holm
and Dokka, 1991), Black Mountains (Holm and Wernicke,
1990; Holm and others, 1992; Holm and Dokka, 1993),
northern Snake Range (Lewis and others, 1999), Skagit
River area (Wernicke and Getty, 1997) and central Sierra
Nevada (House and others, 1997, 1998); (2) intrusive and
eruptive age determinations of igneous rocks in the South
Virgin Mountains (Brady, 1998), Black Mountains
(Asmerom and others, 1990; Holm and others, 1994), Rest-
ing Spring Range (Niemi and others, in press) and Cotton-
wood Mountains (Snow and others, 1991; Snow and Lux,
in press; Niemi and others, in press); and (3) tracer studies
targeted at understanding the evolution of source regions of
magmas in the central Death Valley volcanic field
(Asmerom and others, 1990, 1994). These studies include
isotopic and nuclear-track age determinations on a total of
237 mineral separates, using the YOAr9Ar (68 separates),
(U-Th)/He (85 separates), fission-track (61 separates), U/Pb
(16 separates) and Sm/Nd (7 separates) systems.

Paleomagnetism. Paleomagnetic studies in collabora-
tion with J. Geissman (New Mexico) have been aimed at
unraveling the complex vertical-axis rotation histories of
critical range blocks. To date, we have sampled and ana-
lyzed more than 250 sites (about 2,300 sample cores),

including (1) 75 sites in the South Virgin Mountains (Prot-
erozoic and Mesozoic crystalline rocks; J. Geissman and
others, unpublished data); (2) 54 sites in the Black Moun-
tains (Miocene intrusions and mafic lavas; Holm and others,
1993; Petronis and others, 1997); (3) 47 sites in the Funeral
and Grapevine Mountains (mainly Paleozoic carbonate and
Tertiary volcanic strata; Snow and others, 1993); (4) 30 sites
in the Panamint Mountains (Miocene intrusives, mafic lavas,
and Paleozoic carbonates; Petronis and others, 1997); and
(5) 50 sites in the Greenwater Range (Miocene intrusions
and Miocene and younger volcanic strata; Petronis and oth-
ers, 1997).

Geodesy and geophysics. In collaboration with J.L.
Davis (Smithsonian Astrophysical Observatory), we have
conducted annual campaign-style GPS geodetic surveys of a
15-site network in Death Valley National Park and the adja-
cent Yucca Mountain area since 1991 (Bennett and others,
1997; Wernicke and others, 1998a). Since 1996, we have
been building a 50-site network of continuously operating
GPS stations covering the entire Great Basin and adjacent
portions of the Colorado Plateau and Sierra Nevada. The
first 18 of these sites, primarily in the northern Great Basin,
became operational in 1996 (Bennett and others, 1998; in
press). The remaining 32 sites became operational in early
1999 (Wernicke and others, 1998b). Continuous sites
include one site each in the Argus Range, Panamints, Funer-
als, Greenwaters, Dublin Hills, Bullfrog Hills, and Las
Vegas Range; two each in the Sierra Nevada, Spring Moun-
tains, and Grand Canyon area; and an additional 15 sites
deployed across the southern part of the Nevada Test Site,
centered on Yucca Mountain.

In September 1993, in collaboration with a large num-
ber of institutions, the group participated in the SSCD, which
involved deploying 700 seismometers along an east-west
seismic refraction line extending from Visalia to Death
Valley Junction, and 2 days later reinstalling the same 700
seismometers along a north-south line from Bishop to the
Ridgecrest area.

SUMMARY OF RESULTS

The results of our latest reconstruction (fig. 2, Snow and
Wernicke, in press), which modifies an earlier reconstruction
(Wernicke and others, 1988) by accounting for new strati-
graphic, paleomagnetic and isotopic data, indicate ~250-300
km of west-northwest motion of the Sierra away from the
Colorado Plateau since 20 Ma. Extension is balanced by
both crustal thinning and north-south shortening of the inter-
vening continental crust. Tertiary intermontane basin depos-
its and mineral cooling ages of deeply exhumed rocks
constrain the overall kinematics, permitting the construction
of a strain-compatible “movie” of range-block positions in 2-
m.y. increments. This exercise revealed a strong component
of westward migration of intense deformation with time,
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Figure 2 (above and left). Reconstruction of deformation, south-
ern Great Basin region, modified from Snow and Wernicke (1999).
Left, configuration at 36 Ma; above, present day configuration. B,
Bishop; L, Lone Pine; R, Ridgecrest; V, Las Vegas; S, St. George;
K, Kingman.

consistent with the “rolling hinge” model of extensional
deformation (Wernicke and Axen, 1988; Wernicke, 1992;
Holm and others, 1992; Holm and Dokka, 1993; see also
Hoisch and others, 1997).

Kinematic interpretations of local subareas at signifi-
cant variance with the Wernicke and others and Snow-Wer-
nicke reconstructions include those of Anderson and others
(1994) for the Lake Mead area, Caskey and Schweickert
(1992) for the Nevada Test Site area, and Cemen and others
(1985) and Serpa and Pavlis (1996) for the central Death
Valley area. All kinematic models agree that significant
extension has affected the crust, but they differ in the restored
positions of range blocks and in the amounts of map-view
shear, crustal shortening, and crustal thinning so derived. In
the author’s opinion, these models lack balanced consider-
ation of the entire system of traceable strain markers, each
realizing small gains in local simplicity in the face of huge
losses in regional coherence, especially in regard to strain-
compatible incremental restorations.

The restored positions of range blocks are not specified
in the Anderson and others model for comparison with the
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Snow-Wernicke model. However, their previously
published cross sections through the Mormon Moun-
tains—Tule Springs Hills area that attempt to minimize exten-
sion are grossly out-of-balance. Their conservative pre-
Cenozoic positioning of the Spring Mountains relative to the
Colorado Plateau fails to account for proximal fan breccias
on the west side of the region derived from the South Virgin
Mountains on the east side. Although we agree with their
overall premise that the deformation pattern is complex, it is
difficult to identify specific elements in their interpretations
that preclude our model, and we therefore find their claims
of variance with our model somewhat exaggerated and
dificult to evaluate.

The Caskey-Schweickert model of thrust geometry in
the Test Site area turns on sparsely exposed, relatively
ambiguous structural relations in the Mine Mountain—CP
Hills area. Alternative interpretations of this area lead to
major differences in the geometry of pre-Cenozoic thrusts,
and hence in how one correlates them with thrust to the
south and west. Their preferred geometry and correlations
do not significantly compromise the Snow-Wernicke recon-
struction, which is based primarily on relations in the cen-
tral Death Valley area. However, they do introduce
improbable along-strike complexities in the pre-Cenozoic
geometry of both the thrust belt and miogeoclinal strati-
graphic trends.

The Cemen and others model calls for relatively mod-
est extension across the central Death Valley region, based
primarily on the distribution of middle and upper Miocene
strata between the Panamints and the Resting Spring
Range. In contrast, the Snow-Wernicke model (essentially
the same as that of Stewart (1983) in this area) juxtaposes
the Panamint and Resting Spring Ranges in order to align
various pre-Cenozoic markers. As with the Caskey-
Schweickert model, both the Cemen and others and Serpa-
Pavlis models require a complex and improbable initial
configuration of these markers. Even if such complexity is
granted, both restorations leave proximal middle Miocene
conglomerates in the Resting Spring Range stranded many
tens of kilometers southeast of their source area in the
southern Cottonwood Mountains. These conglomerates
record multiple flooding events carrying detritus up to a
meter in diameter that is derived entirely from rock types
in the modern Marble Canyon drainage, now 105 km to the
north-northwest (Niemi and others, 1999). These consider-
ations and paleoflow data suggest that the conglomerates
were deposited no more than 10-20 km north-northeast of
their source, precluding both models. The comparative
tectonic stasis of the central Death Valley area throughout
the middle and late Miocene indicated by the Cemen-
Wright model also precludes any reasonable explanation
for the exhumation of the Black Mountains crystalline
terrain from depths in excess of 10 km during the same
interval (Asmerom and others, 1990; Holm and others,
1992; Holm and Dokka, 1993).

The principal feature of the Serpa-Pavlis model is a
net clockwise rotation of the Panamints relative to the
Funerals during deformation, such that the east side of the
Panamints lay against the southwest margin of the Funer-
als, restoring the southern Panamints adjacent to the north-
ern Resting Spring Range. The Serpa-Pavlis model does
not take into account major range-parallel distension of the
Funerals relative to the Panamints, which precludes their
map-view reconstruction geometry and proposed correla-
tions of pre-Cenozoic thrust faults. Further, the proposed
relative range block rotations conflict with both paleomag-
netic and paleoflow orientations measured in the Panamints
and Funerals (Snow and Prave, 1994; Petronis and others,
1997). However, aspects of the Serpa-Pavlis model may
provide a more plausible explanation than the Snow-Wer-
nicke model for complex relations in the southern Death
Valley area, where in any event regional strain markers are
not well defined.

Based on our reconstruction (fig. 2), the motion of the
Sierran block with respect to the Colorado Plateau was
mainly westerly at more than 20 mm/yr from 16 to 10 Ma,
changing to northwest or north-northwest since 8—10 Ma, at
an average rate of 15 mm/yr (Wernicke and Snow, 1998).
This overall kinematic reconstruction is consistent with two
other independent methods of determining the position of
the Sierran block since 20 Ma. These include (1) recon-
structions based on paleomagnetic data from range blocks
that bound the Basin and Range on the west (see L. Frei,
1986, Geological Society of America Bulletin); and (2) a
revised history of Pacific-North America plate motion
based on a global plate circuit (see T. Atwater and J. Stock,
1998, International Geological Review). The plate tectonic
reconstruction shows a change to more northerly motion
between the Pacific and North American plates at about 8
Ma, in concert with the motion of the Sierran—Great Valley
block. Moreover, the northeast limit of extant oceanic crust
(as indicated by the reconstruction of the continental geol-
ogy) tracks closely with the southwest limit of extant conti-
nental crust (as indicated by the positions of oceanic plates)
since 20 Ma. The coordination between plate motions and
the intraplate geology implies that we have not grossly
overestimated the amount of deformation in the Death Val-
ley and Lake Mead regions; rather it strongly suggests that
evolving plate boundary forces were a major influence on
deformation within the continent.

The Snow-Wernicke reconstruction makes it possible
to quantify the partitioning of strain between vertical crustal
thinning (via normal faults), map-view plane strain (via con-
jugate strike-slip faults), and crustal shortening (via folds
and thrust faults). Placing a grid of 10 kmx10 km square ele-
ments on a retrodeformed map of the region, and measuring
the increase in area of grid elements between the unde-
formed and present-day (Snow and Wernicke, in press), we
obtain a maximum finite elongation of the Basin and Range
at lat 36°-37° N. of 3.4, oriented N. 73° W. (fig. 2).



Map-view area balance shows that 20 percent of this
elongation is accommodated by map-view plane strain, and
80 percent by crustal thinning. This yields an average
thinning factor for the upper crust of 2.7 between the Sierra
and Plateau, consistent with values suggested previously
(Wernicke and others, 1988) and precluding the hypothesis
that overall Neogene deformation in the central Basin and
Range is predominantly dextral shear plane strain.

The contemporary strain field, however, as revealed by
GPS studies, is clearly dominated by regional right shear
(Bennett and others, 1997; in press). The extreme localized
thinning of the upper crust, in concert with seismic data
showing that the southern Sierra Nevada has similar crustal
thickness to the central Basin and Range (Wernicke and
others, 1996), supports the hypothesis of large-scale
eastward flow of Sierran deep crust during extension, as a
fluid layer or crustal asthenosphere (Wernicke, 1990, 1992;
Wernicke and Getty, 1997).

ROLE OF THE NATIONAL PARK SERVICE IN RESEARCH

During the last 20 years, support for geologic research
in the region by the National Park Service and other agencies
has generally been strong. Recently, however, in Death
Valley National Park in particular, relations between scien-
tists and park managers and patrol rangers have deteriorated
significantly. The root of the problem may lie in intensifying
demands on the Park Service by Congress, various public
interest groups (assuming you’re part of their particular
public), and possibly even the public itself, without
commensurate increases in Federal support. These changes
may have promoted misunderstanding on the part of both
park managers and researchers as to one another’s objectives
and concerns.

Researchers perceive a heightened bureaucratic work-
load unilaterally imposed on them by park managers, and are
skeptical that these efforts are of significant benefit to either
science or protection of park resources. Based on a formal
poll of scientists working in the park, newly instituted per-
mitting and reporting requirements (outlined in Information
for Researchers, 1995) are variously regarded as unrealistic,
excessively bureaucratic, obstructive, out-of-step with the
needs of the research community, or all of the above. Despite
the official encouragement of research by the park, in prac-
tice most researchers complain of an unwelcoming atmo-
sphere and distrust from resource managers and outright
hostility from patrol rangers, and believe that substantial
damage to the park’s scientific mission is being done.
Accordingly, these procedures require careful reevaluation
by the park. A local task force, perhaps including both
researchers and park managers, should be formed to air con-
cerns and establish a new set of permitting and reporting pro-
cedures, perhaps more along the lines of those in place prior
to 1995.
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